Lane (Lei) Huang

L(+1) (646) 543-8495 **≥**eih5@illinois.edu **l**ei-huang-winlere **⊕**https://winlere.github.io

Highlights _

- **HPC at scale and speed:** built both scalable distributed systems (ML infra and Storage Infra) and extremely fast program with low-level optimizations; ISC/SC award-winning results.
- Modern C++ & Python & CUDA expert: modern C++ and Python/PyTorch; applied in system and parallel programming; ICPC medalist.
- **Proven in top environments:** engineer roles at Sixie Capital (top quant trading firm in China), a startup at MIT, NUS and UIUC.

Education _

University of Illinois Urbana-Champaign

Illinois, USA

Computer Science, Master of Science

Aug. 2025 - May 2027 (Expected)

ShanghaiTech University

Shanghai, China

Computer Science, Bachelor of Engineering | GPA 3.86/4.0 (Major) 3.70/4.0 (Overall)

Sep. 2021 - Jul. 2025

Bachelor's Concentration: **Computational Mathematics** Shanghai Municipal Outstanding Graduate (5% of the City)

Work Experience

Rsearch Assistant Illinois USA

University of Illinois Urbana-Champaign

Aug. 2025 - Present

Parallel and distributed progarmming in Python. Scaling $\alpha\beta$ -CROWN towards parallel, high-performant, distributed and scaled formal verifier, applying high performance computing techniques to the program in Python PyTorch.

ML System Engineer

Remote

Research Startup at MIT

Jul. 2025 - Aug. 2025

Built an end-to-end large language model pretraining system in HPC GPU and networking, including a data production cluster (10M tok/s output), distributed training system (NVIDIA Megatron) and evaluation tools. Produced 1 Trillion (10^{12}) tokens and finished the training of a 890M model on 16 H100 in 14 days.

System Engineer Shanghai, China

Sixie Capital 🖸 Dec. 2024 - Jul. 2025

• **GPU Support**: Provided GPU/CUDA/PyTorch support for the quantitative research team. Discovered a PyTorch bug that was later triaged by the cutlass team.

- **Distributed ML Training**: Implemented multi-node, multi-GPU distributed model training on a GPU cluster, enabling one-click start/stop and saving significant time for the research team.
- **Distributed File System**: Automated the deployment and configuration of BeeGFS over RDMA Infiniband, serving as the storage infrastructure of the HPC cluster.
- Auto Evolving Data Production Check: Delivered a meta-rule based market data check framework, automatically covering all existing fields and incoming fields. Prevented five data production incidents.

Research Assistant

Singapore and Shanghai

National University of Singapore (NUS)

Dec. 2023 - Dec. 2024

• Developed CUDA implementations of the algorithm, achieving a 1000x speedup.

Projects ___

1. System Programming

PintOS: Operating System Kernel

Oprofetia/pintos

C, CMake, make, GDB

To understand operating systems, we implemented an OS kernel featuring thread scheduling, system calls, virtual memory, and a file system. It can successfully boot in QEMU.

profetia/rather-

Rathernet: A Full 7-Layer OSI Computer Network Carried by Sound Waves

net

Rust

To learn computer networking from the ground up, we started with sound wave modulation/demodulation to build a full 7-layer OSI network. We implemented physical, data link, network, and transport layers, installed our driver (presentation layer) on Windows 11, and successfully connected to the internet (application layer).

ChocoPy: A Compiler of Python Targeting RISC-V and LLVM-IR Cs131-chocopy/chocopy C++, Flex, Bison, RISC-V, LLVM-IR

To study compiler principles, we built a compiler that processes a front-end language into an abstract syntax tree and generates LLVM IR and RISC-V stack machine code.

2. Parallel & High-Performance Programming

LBM: Fluid Simulation Optimized for Microarchitectural Features

○Winlere/lbm

C, OpenMP, SSE2, AVX2

To practice efficient microarchitectural use, I optimized a fluid simulation program by employing cache-friendly memory access patterns and SIMD instructions, achieving a 200x speedup using 4 CPU cores.

BFAVerifier: CUDA-Accelerated Formal Verifier for Bit-Flip Attacks CUDA/C++, Gurobi

Implemented the SymPoly algorithm from our published paper using CUDA, achieving a 1000x speedup compared to the CPU version.

Cuckoo Hash: CUDA Parallel Hash Table

Winlere/CuckooHash

CUDA/C++, CUDA Stream, NVIDIA Nsight

To study GPU programming, I implemented a GPU-based parallel hash table that achieves up to 1×10^9 insertions or 2×10^9 queries per second on an RTX 3090.

Competitions .

Student Cluster Competition (SCC)

Hamburg, Germany; Denver, USA

ShanghaiTech University GeekPie HPC Team

Jan. 2023 - Nov. 2023

- ISC'23 Student Cluster Competition: Third Place. Compiled, ran, analyzed, and optimized a fluid simulation program on FAU and Bridges-2 supercomputers.
- SC'23 Student Cluster Competition: Seventh Place, with an Outstanding Reproducibility Report. Over 48 continuous hours, compiled, ran, and analyzed large-scale matrix decomposition algorithms, successfully reproducing key results.

International Collegiate Programming Contest (ICPC) Shanghai, Nanjing, Hefei (China)

• ICPC Asia Regional: Solved 7 complex algorithmic problems within five consecutive hours. As team captain and a core member, led the team to win 3 silver medals.

Publications

Verification of Bit-Flip Attacks against Quantized Neural Networks <a>COPSLA 2025 (CCF-A)

Yedi Zhang, Lei Huang, Pengfei Gao, Fu Song, Jun Sun, Jin Song Dong

Feb. 2025

Skills .

Programming Modern C/C++, Python, CUDA/C++, PyTorch, Not limited to any single language

Speaking Chinese (Native), English (Fluent)

Other Skills Linux System-Level Programming & Administration, Pandas, Gurobi Solver